SPECIALIST (CO-OPERATIVE) PROGRAM IN NEUROSCIENCE (SCIENCE)

Academic Program Advisor: A. Lawson psychundergrad.utsc@utoronto.ca
Co-op Program Coordinator: C. Dixon coopsuccess.utsc@utoronto.ca

The Specialist Program in Neuroscience is a research-intensive program designed to provide students with strong breadth in the major domains of neuroscience, as well as an opportunity to intensively focus on one of three streams.
This is a Work Integrated Learning (WIL) program that combines academic studies with paid work terms in the public, private, and/or non-profit sectors. The program provides students with the opportunity to develop the academic and professional skills required to pursue employment in these areas, or to continue on to graduate training in an academic field related to Neuroscience upon graduation.
In addition to their academic course requirements, students must successfully complete the additive Arts & Science Co-op Work Term and Course requirements.

Students will choose one of the following three streams:

A. Systems/Behavioural: this stream examines the neural mechanisms underlying behaviour and how brain circuits work together to analyze external stimuli, internal biological states, and past experiences in order to coordinate appropriate responses, predominantly through the use of in vivo approaches in behaving subjects (e.g., optogenetics, chemogenetics).

B. Cellular/Molecular: this stream explores the nervous system at its most fundamental level, investigating the influence of genes, signalling molecules, and cellular morphology on the development and maintenance of brain function, predominantly through the use of in vitro techniques (e.g., immunohistochemistry, patch clamp).

C. Cognitive: this stream focuses on understanding the neural basis of human cognition (e.g., language, memory, attention, decision-making) predominantly through the use of patient neuropsychology and neuroimaging techniques (e.g., magnetic resonance imaging (MRI), electroencephalography (EEG)).

In addition to their academic course requirements, students must successfully complete the additive Arts & Science Co-op Work Term Preparation courses and a minimum of two Co-op work terms.

Enrolment Requirements

Enrolment in the Program is limited, and takes place in two stages.

Stage 1:
Students may apply to Stage 1 after successfully completing a minimum of 4.0 credits, including the Scientific Foundations courses: BIOA01H3, BIOA02H3, CHMA10H3, CHMA11H3, [MATA29H3 or MATA30H3], PSYA01H3, and PSYA02H3. Students must have a CGPA of 2.75 or higher to be admitted to the program. Application for admission will be made to the Office of the Registrar through ACORN. For more information on applying to limited enrolment programs, please visit the Office of the Registrar website.

Stage 2:
To complete the program, students must choose one of the three available streams. Students who have successfully met the enrolment requirements of their chosen stream will be admitted to the Specialist Neuroscience Stage 2 category. Applications for admission to a Stage 2 stream will be made to the Office of the Registrar through ACORN in March/April and June/July.

Before applying to their chosen stream, students must:

1. Complete a minimum of 10.0 credits including all Stage 1 Scientific Foundations course requirements, as well as the Neuroscience Foundations courses which include BIOB10H3, NROB60H3, NROB61H3, [PSYB07H3 or STAB22H3], PSYB55H3, PSYB70H3;

2. Complete 1.0 credit in Stream Foundations courses from the following list*:
BIOB11H3 Molecular Aspects of Cellular and Genetic Processes
CSCA20H3 Introduction to Programming
CHMB41H3 Organic Chemistry I
CHMB42H3 Organic Chemistry II
MATA23H3 Linear Algebra
[PHYA10H3 Physics I for the Physical Sciences or PHYA11H3 Physics I for the Life Sciences]
PSYB51H3 Introduction to Perception
PSYC08H3 Advanced Data Analysis in Psychology
PSYC09H3 Applied Multiple Regression in Psychology

*Notes:
(i) students are advised to exercise caution when selecting these courses since some can be applied to all three streams (BIOB11H3, CHMB41H3, PSYB51H3, PSYC08H3), but others can be applied to only one or two streams;
(ii) the Cognitive stream does not include a component called "Stream-specific electives"; students interested in this stream should select from the following: MATA23H3, BIOB11H3, CHMB41H3, PSYB51H3, [PSYC08H3 or PSYC09H3].

3. Have achieved a CGPA of 2.5 or higher.

Current Co-op Students:
Students admitted to a Co-op Degree POSt in their first year of study must request a Co-op Subject POSt on ACORN upon completion of 4.0 credits and must meet the minimum qualifications for entry as noted above.

Prospective Co-op Students:
Prospective Co-op students (i.e., those not yet admitted to a Co-op Degree POSt) must submit a program request on ACORN, and meet the minimum qualifications noted above. Deadlines follow the Limited Enrolment Program Application Deadlines set by the Office of the Registrar each year. Failure to submit the program request on ACORN will result in that student's application not being considered.

Academic Completion Requirements
This program requires students to complete 6.5 credits in core courses that are common to all streams. Students will complete a further 7.0 credits, specific to their stream, for a total of 13.5 credits.

CORE (6.5 credits)

1. Scientific Foundations (3.5 credits):
BIOA01H3 Life on Earth: Unifying Principles
BIOA02H3 Life on Earth: Form, Function and Interactions
CHMA10H3 Introductory Chemistry I: Structure and Bonding
[CHMA11H3 Introductory Chemistry II: Reactions and Mechanisms or CHMA12H3 Advanced General Chemistry]
[MATA29H3 Calculus I for the Life Sciences or MATA30H3 Calculus I for Physical Sciences]
PSYA01H3 Introduction to Biological and Cognitive Psychology
PSYA02H3 Introduction to Clinical, Developmental, Personality and Social Psychology

2. Neuroscience Foundations (3.0 credits):
BIOB10H3 Cell Biology
NROB60H3 Neuroanatomy Laboratory
NROB61H3 Neurophysiology
PSYB55H3 Introduction to Cognitive Neuroscience
[PSYB07H3 Data Analysis in Psychology or STAB22H3 Statistics I]
PSYB70H3 Methods in Psychological Science

A. Systems/Behavioural Stream (7.0 credits)

3. Quantitative Logic and Reasoning (1.0 credit):
PSYC08H3 Advanced Data Analysis in Psychology
and one of the following:
CSCA20H3 Introduction to Programming
[PHYA10H3 Physics I for the Physical Sciences or PHYA11H3 Physics I for the Life Sciences]

4. Advanced Foundations (2.5 credits):
BIOB11H3 Molecular Aspects of Cellular and Genetic Processes
BIOB12H3 Cell and Molecular Biology Laboratory
NROC61H3 Learning and Motivation
and two of the following:
NROC34H3 Neuroethology
NROC64H3 Sensorimotor Systems
NROC69H3 Synaptic Organization & Physiology of the Brain

5. Stream-specific electives (1.0 credit):
CHMB41H3 Organic Chemistry I
and one of the following:
BIOC14H3 Genes, Environment and Behaviour
CHMB42H3 Organic Chemistry II
NROC36H3 Molecular Neuroscience
PSYC62H3 Drugs and the Brain

6. Breadth in Neuroscience (1.0 credit):
NROC36H3 Molecular Neuroscience*
NROC69H3 Synaptic Organization & Physiology of the Brain*
PSYB51H3 Introduction to Perception
PSYC51H3 Cognitive Neuroscience of Vision
PSYC52H3 Cognitive Neuroscience of Attention
PSYC54H3 Auditory Cognitive Neuroscience
PSYC57H3 Cognitive Neuroscience of Decision Making
PSYC59H3 Cognitive Neuroscience of Language
*only if not used to complete components A4 or A5 of the requirements

7. Laboratory Course (0.5 credit):
NROC60H3 Cellular Neuroscience Laboratory
NROC63H3 Behavioural Neuroscience Laboratory (recommended)
NROC90H3 Supervised Study in Neuroscience
NROC93H3 Supervised Study in Neuroscience
PSYC74H3 Human Movement Laboratory

8. Capstone Courses (1.0 credit):
BIOD07H3 Advanced Topics and Methods in Neural Circuit Analysis
BIOD19H3 Epigenetics in Health and Disease
BIOD45H3 Animal Communication
BIOD65H3 Pathologies of the Nervous System
NROD08H3/​BIOD08H3 Theoretical Neuroscience
NROD60H3 Current Topics in Neuroscience
NROD61H3 Emotional Learning Circuits
NROD66H3 Drug Addiction
NROD67H3 Neuroscience of Aging
NROD98Y3 Thesis in Neuroscience*
PSYD66H3 Current Topics in Human Brain & Behaviour
*Note: only 0.5 credit of NROD98Y3 can be counted towards the Capstone course requirement

B. Cellular/Molecular Stream (7.0 credits)

3. Quantitative Logic and Reasoning (1.0 credit):
PSYC08H3 Advanced Data Analysis in Psychology
and one of the following:
CSCA20H3 Introduction to Programming
[PHYA10H3 Physics I for the Physical Sciences or PHYA11H3 Physics I for the Life Sciences]

4. Advanced Foundations (2.5 credits):
BIOB11H3 Molecular Aspects of Cellular and Genetic Processes
BIOB12H3 Cell and Molecular Biology Laboratory
CHMB41H3 Organic Chemistry I
NROC36H3 Molecular Neuroscience
NROC69H3 Synaptic Organization & Physiology of the Brain

5. Stream-specific electives (1.0 credit):
BIOC12H3 Biochemistry I: Proteins & Enzymes
BIOC13H3 Biochemistry II: Bioenergetics & Metabolism
BIOC14H3 Genes, Environment and Behaviour
CHMB42H3 Organic Chemistry II
NROC34H3 Neuroethology
NROC61H3 Learning and Motivation
NROC64H3 Sensorimotor Systems
PSYC62H3 Drugs and the Brain

6. Breadth in Neuroscience (1.0 credit):
NROC34H3 Neuroethology*
NROC61H3 Learning and Motivation*
NROC64H3 Sensorimotor Systems*
PSYB51H3 Introduction to Perception
PSYC51H3 Cognitive Neuroscience of Vision
PSYC52H3 Cognitive Neuroscience of Attention
PSYC54H3 Auditory Cognitive Neuroscience
PSYC57H3 Cognitive Neuroscience of Decision Making
PSYC59H3 Cognitive Neuroscience of Language
*only if not used to complete component B5 of the requirements

7. Laboratory Course (0.5 credit):
NROC60H3 Cellular Neuroscience Laboratory (recommended)
NROC63H3 Behavioural Neuroscience Laboratory
NROC90H3 Supervised Study in Neuroscience
NROC93H3 Supervised Study in Neuroscience

8. Capstone Courses (1.0 credit):
BIOD07H3 Advanced Topics and Methods in Neural Circuit Analysis
BIOD19H3 Epigenetics in Health and Disease
BIOD65H3 Pathologies of the Nervous System
NROD08H3/​BIOD08H3 Theoretical Neuroscience
NROD60H3 Current Topics in Neuroscience
NROD61H3 Emotional Learning Circuits
NROD66H3 Drug Addiction
NROD67H3 Neuroscience of Aging
NROD98Y3 Thesis in Neuroscience*
PSYD66H3 Current Topics in Human Brain & Behaviour
*Note: only 0.5 credit of NROD98Y3 can be counted towards the Capstone course requirement

C. Cognitive Stream (7.0 credits)

3. Quantitative and Methodological Skills (1.5 credits):
PSYC02H3 Scientific Communication in Psychology
PSYC70H3 Advanced Research Methods Laboratory
[PSYC08H3 Advanced Data Analysis in Psychology or PSYC09H3 Applied Multiple Regression in Psychology]

4. Advanced Programming (1.5 credits):
MATA23H3 Linear Algebra
[[CSCA08H3 Introduction to Computer Science I and CSCA48H3 Introduction to Computer Science II]* or [PSYB03H3 Introduction to Computers in Psychological Research and PSYC03H3 Introduction to Computers in Psychological Research: Advanced Topics]]
*Note: students are strongly advised to choose the [PSYB03H3 and PSYC03H3] pairing.

5. Advanced Foundations (1.5 credits):
PSYB51H3 Introduction to Perception
and two of the following:
PSYC51H3 Cognitive Neuroscience of Vision
PSYC52H3 Cognitive Neuroscience of Attention
PSYC54H3 Auditory Cognitive Neuroscience
PSYC57H3 Cognitive Neuroscience of Decision Making
PSYC59H3 Cognitive Neuroscience of Language

6. Breadth in Neuroscience (1.0 credit):
(at least 0.5 credit must be a C-level NRO course)
BIOB11H3 Molecular Aspects of Cellular and Genetic Processes
CHMB41H3 Organic Chemistry I
NROC34H3 Neuroethology
NROC36H3 Molecular Neuroscience
NROC61H3 Learning and Motivation
NROC64H3 Sensorimotor Systems
NROC69H3 Synaptic Organization & Physiology of the Brain

7. Laboratory Course (0.5 credit):
NROC90H3 Supervised Study in Neuroscience
NROC93H3 Supervised Study in Neuroscience
PSYC75H3 Cognitive Psychology Laboratory
PSYC76H3 Brain Imaging Laboratory

8. Capstone Courses (1.0 credit):
PSYD17H3 Social Neuroscience
PSYD50H3 Current Topics in Memory and Cognition
PSYD51H3 Current Topics in Perception
PSYD54H3 Current Topics in Visual Recognition
PSYD55H3 Functional Magnetic Resonance Imaging Laboratory
PSYD62H3 Neuroscience of Pleasure and Reward
PSYD66H3 Current Topics in Human Brain & Behaviour
NROD98Y3 Thesis in Neuroscience*

*Note: only 0.5 credit of NROD98Y3 can be counted towards the Capstone course requirement

Co-op Work Term Requirements
Students must satisfactorily complete Co-op work term(s) as follows: two 4-month work terms, or one 8-month work term. To be eligible for their first work term, students must:

Students must be available for work terms in each of the Fall, Winter, and Summer semesters and must complete at least one of their required work terms in either a Fall or Winter semester. This requires that students take courses during at least one Summer semester.

Co-op Course Requirements
In addition to their academic program requirements, Co-op students complete the following Co-op specific courses as part of their degree:

  • Co-op Preparation courses: COPB50H3 and COPB51H3 (completed in first year)
  • Work Term Search courses: COPB52H3 (semester prior to first work term), COPC98H3 (semester prior to second work term), and COPC99H3 (semester prior to third work term)
  • Co-op Work Term courses: COPC40H3 (each semester a student is on work term)

These courses are designed to prepare students for their job search and work term experience, and to maximize the benefits of their Co-op work terms. They must be completed in sequence, and fall into three categories: Co-op Preparation courses (COPB50H3 & COPB51H3) are completed in first year, and cover a variety of topics intended to assist students in developing the skills and tools required to secure a work term; Work Term Search Courses (COPB52H3, COPC98H3, & COPC99H3) are completed in the semester prior to each work term, and support students while competing for work terms that are appropriate to their program of study, as well as preparing students for the transition into and how to succeed the workplace; Co-op Work Term courses (COPC40H3) are completed during each semester that a student is on work term, and support students’ success while on work term, as well as connecting their academics and the workplace experience.

Co-op courses are taken in addition to a full course load. They are recorded on transcripts as credit/no credit (CR/NCR) and are considered to be additive credit to the 20.0 required degree credits. No additional course fee is assessed as registration is included in the Co-op Program fee.

For information on fees, status in Co-op programs, and certification of completion of Co-op programs, see the 6B.5 Co-operative Programs section or the Arts and Science Co-op section in the UTSC Calendar.